Микросхемы позволяет управлять шкалой из 5 светодиодов, отображая на ней уровень звукового сигнала. Сигнал не обязательно должен быть звуковым. Но поскольку шкала в этой микросхеме логарифмическая, то она прекрасно подходит для индикации уровня звука.
В даташите авторы предлагают нам такую схему включения микросхемы AN6884:
Напряжение питания Vcc можно подавать в очень широком диапазоне – от 3 до 16 вольт. Мы в наших экспериментах ограничимся 9 вольтами от «Кроны». От напряжения питания зависит только величина сопротивления R, ограничивающего ток через светодиоды.
Резистор и конденсатор, подключенные к 7-й ноге играют роль времязадающей RC-цепочки. Изменяя номинал резистора, можно изменять скорость спадания светодиодной линейки. Если вместо 10 кОм поставить 2…3 кОм, столбик будет двигаться быстрее. Если заменить его на 30 кОм, столбик будет шевелиться намного медленнее. Оптимальным, на мой взгляд, является значение в 8…10 кОм.
Схему можно немного переделать. Вместо одного общего резистора R поставить пять отдельных на каждый светодиод. Так можно сделать яркость светодиодов более равномерной. Если используются светодиоды разных цветов, то можно подобрать подходящие резисторы для каждого типа светодиодов. Часто случается, что зелёные и синие светодиоды при одном и том же токе горят ярче, чем красные и жёлтые.
Расширяем индикаторы
Можно двинуться дальше и собрать нечто более сложное и впечатляющее. Например, индикатор, состоящий не из 5, а из 10 светодиодов. Существуют два способа это сделать, совместив две микросхемы AN6884.
Первый способ.
Совместим два индикатора так, чтобы светодиоды, подключенные к одной и к другой AN6884 чередовались. На рис.9 все нечётные светодиоды подключены к DA1, а все чётные – к DA2.
Допустим, мы соединим входы (8-е вводы) и пустим на них один и тот же сигнал. В этом случае микросхемы будут работать абсолютно синхронно и светодиоды будут включаться парами (HL1-HL2, HL3-HL4 и т.д.)
Нам же надо, чтобы они загорались по очереди – HL1, HL2, HL3, HL4 и т.д. Для этого мы при помощи резисторов R14 и R15 немного ослабляем уровень сигнала на входе одной из микросхем – DA1. Точной подстройкой резистора R14 добиваемся того, чтобы светодиод HL2 загорался после HL1, HL4 загорался после HL3. После подстройки резистор R14 нам больше не надо трогать. Далее общий входной уровень для двух микросхем задаём переменным резистором R13.
Получившийся индикатор более точно отображает уровень звука, чем индикатор на 5 светодиодах.
Важные условия: номиналы резисторов R11 и R12 и конденсаторов С1 и С2 должны быть равны, чтобы столбики нарастали и спадали с одинаковой скоростью.
Второй способ.
Поставим две шкалы «друг на друга». Светодиоды с 1-го по 5-й подключены к микросхеме DA1, светодиоды с 6-го по 10-й подключены к DA2.
На вход микросхемы DA2 нужно пустить сигнал, сильно ослабленный, по сравнению с сигналом на входе DA1. Это ослабление, как и в прежнем случае, задаётся резисторами R14 и R15. Подстройкой резистора R15 подбирается такой режим, при котором светодиод HL6 загорается сразу после светодиода HL5.
Такой индикатор будет отображать уровень громкости в более широком диапазоне, чем предыдущие версии.
Строим спектроанализатор
Развивая дальше эти схемы, можно собрать ещё более интересные устройства. Например, многоканальный спектроанализатор – светомузыкальное устройство с прыгающими световыми столбиками, где каждый столбик соответствует определённой полосе частот – от низких до высоких.
Для этого понадобится разместить несколько индикаторов и подключить к ним сигнал через полосовые фильтры, настроенные на различные частоты. К выходу операционного усилителя DA2.1 на рис.8 вместо фильтра низких частот на R14, C4, DA2.2 следует подключить параллельно несколько полосовых фильтров подобного вида:
К выходу каждого фильтра подключается индикатор на двух AN6884.
В таблице приведены значения ёмкостей и сопротивлений для разных полос 7-полосного спектроанализатора. Значения рассчитывались через программу Filter Wiz Pro.
Центральная частота | 100 Гц | 200 Гц | 500 Гц | 1 кГц | 2 кГц | 5 кГц | 10 кГц |
Ширина полосы | 10 Гц | 20 Гц | 50 Гц | 100 Гц | 200 Гц | 500 Гц | 1 кГц |
Ra | 390 Ом | 75 Ом | 91 Ом | 240 Ом | 72 Ом | 51 Ом | 24 Ом |
Rb | 100 кОм | 82 кОм | 100 кОм | 100 кОм | 82 кОм | 91 кОм | 91 кОм |
Ca | 330 нФ | 100 нФ | 33 нФ | 33 нФ | 10 нФ | 4,7 нФ | 330 нФ |
Cb | 330 нФ | 1 мкФ | 330 нФ | 33 нФ | 100 нФ | 47 нФ | 330 нФ |
Именно такую схему я собрал четыре года назад, когда ещё только осваивал электронику. На фотографии результат работы. Для сравнения размеров: рядом 17-дюймовый монитор.
Технические характеристики:
Напряжение питания………………………3,5 — 15 В
Ток покоя………………………………………7 — 10 мА
Выходной ток…………………………………7 — 10 мА
Минимальное входное напряжение……50 мВ
Частотный диапазон………………………..20 — 20000 Гц
Диапазон индикации ……………………….18 — 20dB
Перечень элементов:
R3 — 47 кОм — 100 кОм
C1 — 10 мкФ х 10 В
C2 — 1 мкФ х 10 В
VD1 — VD5 — АЛ307 (КИПМО)
В зависимости от уровня входного сигнала выбирают следующие номиналы резисторов R1, R2:
R2 служит для регулировки чувствительности индикатора, С2 задает постоянную времени индикации С2,R2 — задают постоянную времени обратного хода индикатора.
Купить Светодиодный индикатор уровня сигнала на KA2284 (AN6884) за $
Задать вопрос или оставить комментарий:
Кроме того, не раскрыто применение например для индикации уровней заряда батареи